Glycolate and glyoxylate metabolism in HepG2 cells.

نویسندگان

  • Paul R S Baker
  • Scott D Cramer
  • Martha Kennedy
  • Dean G Assimos
  • Ross P Holmes
چکیده

Oxalate synthesis in human hepatocytes is not well defined despite the clinical significance of its overproduction in diseases such as the primary hyperoxalurias. To further define these steps, the metabolism to oxalate of the oxalate precursors glycolate and glyoxylate and the possible pathways involved were examined in HepG2 cells. These cells were found to contain oxalate, glyoxylate, and glycolate as intracellular metabolites and to excrete oxalate and glycolate into the medium. Glycolate was taken up more effectively by cells than glyoxylate, but glyoxylate was more efficiently converted to oxalate. Oxalate was formed from exogenous glycolate only when cells were exposed to high concentrations. Peroxisomes in HepG2 cells, in contrast to those in human hepatocytes, were not involved in glycolate metabolism. Incubations with purified lactate dehydrogenase suggested that this enzyme was responsible for the metabolism of glycolate to oxalate in HepG2 cells. The formation of 14C-labeled glycine from 14C-labeled glycolate was observed only when cell membranes were permeabilized with Triton X-100. These results imply that peroxisome permeability to glycolate is restricted in these cells. Mitochondria, which produce glyoxylate from hydroxyproline metabolism, contained both alanine:glyoxylate aminotransferase (AGT)2 and glyoxylate reductase activities, which can convert glyoxylate to glycine and glycolate, respectively. Expression of AGT2 mRNA in HepG2 cells was confirmed by RT-PCR. These results indicate that HepG2 cells will be useful in clarifying the nonperoxisomal metabolism associated with oxalate synthesis in human hepatocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycolate and glyoxylate metabolism by isolated peroxisomes or chloroplasts.

Chloroplasts, mitochondria, and peroxisomes from leaves were separated by isopycnic sucrose density gradient centrifugation. The peroxisomes converted glycolate-(14)C or glyoxylate-(14)C to glycine, and contained a glutamate: glyoxylate aminotransferase as indicated by an investigation of substrate specificity. The pH optimum for the aminotransferase was between 7.0 and 7.5, and the Km for l-gl...

متن کامل

Glyoxylate and glutamate effects on photosynthetic carbon metabolism in isolated chloroplasts and mesophyll cells of spinach.

Addition of millimolar sodium glyoxylate to spinach (Spinacia oleracea) chloroplasts was inhibitory to photosynthetic incorporation of (14)CO(2) under conditions of both low (0.2 millimolar or air levels) and high (9 millimolar) CO(2) concentrations. Incorporation of (14)C into most metabolites decreased. Labeling of 6-P-gluconate and fructose-1,6-bis-P increased. This suggested that glyoxylate...

متن کامل

Control of photorespiratory glycolate metabolism in an oxygen-resistant mutant of Chlorella sorokiniana.

Under a gas atmosphere of 99% O2/1% CO2, wild-type cells of Chlorella sorokiniana excreted 12% of their dry weight as glycolate during photolithotrophic growth, whereas mutant cells excreted glycolate at only 3% of the cellular dry weight. The observed difference in glycolate excretion by the two cell types appears to be due to a different capacity for the metabolism of glycolate, rather than t...

متن کامل

Glycolate stimulation of oxygen evolution during photosynthesis.

Glycolate and glyoxylate stimulated 100% to 300% the rate of oxygen evolution by Scenedesmus in the light in the absence of added carbon dioxide. This stimulation occurred either aerobically or anaerobically, and was sensitive to CMU. Aerobic dark respiration was stimulated 25% to 100% by glycolate. This phenomenon was best demonstrated with synchronized Scenedesmus at the stage of cell divisio...

متن کامل

Metabolism of Glycolate in Isolated Spinach Leaf Peroxisomes : KINETICS OF GLYOXYLATE, OXALATE, CARBON DIOXIDE, AND GLYCINE FORMATION.

The flow of glyoxylate derived from glycolate into various metabolic routes in the peroxisomes during photorespiration was assessed. Isolated spinach leaf peroxisomes were fed [(14)C] glycolate in the absence or presence of exogenous glutamate, and the formation of radioactive glyoxylate, CO(2), glycine, oxalate, and formate was monitored at time intervals. In the absence of glutamate, 80% of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 287 5  شماره 

صفحات  -

تاریخ انتشار 2004